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1. INTRODUCTION1

 
    Ensemble Kalman Filters (EnKF) have been 
shown to be more accurate than 3D-Var in data 
assimilation simulations under the assumption of a 
perfect model. However, in reality, the forecast 
model has deficiencies and does not represent the 
atmospheric behavior precisely due to lack of 
resolution, approximate parameterizations of 
subgrid scale physical processes, and numerical 
dispersion. For assimilation of real observations, 
into an imperfect model, it is not yet clear whether 
the EnKF will be competitive or better than the 
current operational 3D-Var data assimilation 
systems. Only recently have some EnKF schemes 
advanced from the perfect model scenario to real-
world situations. Houtekamer et al (2005) showed 
that the quality of EnKF with perturbed 
observations was comparable to 3D-Var. The 
Ensemble Square-Root filter (EnSRF) was 
reported (Whitaker et al 2004) to outperform the 
NCEP 3D-Var in reconstructing the middle and 
lower tropospheric analysis in the Northern 
Hemisphere at T62/L28 resolution. Miyoshi (2005) 
also showed that EnKF is most advantageous 
over 3D-Var when the observing network is sparse 
and also that the advantage diminishes in the 
presence of model errors. Model errors have a 
stronger negative influence on the performance of 
the EnKF than on the 3D-Var because Kalman 
filtering algorithms rely strongly on the assumption 
of an unbiased model, an assumption which is not 
satisfied in practice.  Therefore, accounting for 
systematic errors associated with model 
deficiencies has become an important issue for all 
data assimilation systems, and especially for 
EnKF.  
    The Local Ensemble Transform Kalman Filter 
(LETKF) (Hunt 2005) is a relatively new data 
assimilation scheme in the square root EnKF 
family, and is similar to the Local Ensemble 
Kalman Filter (Ott et al 2004) but faster.  It has 
been implemented to assimilate simulated 
observations in the NCEP GFS model (Szunyogh 
et al. 2005), and recently in the NASA fvGCM 
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model (Liu et al. 2005). The results are excellent 
for a perfect model scenario. In order to develop 
the LETKF into a competitive, operationally 
applicable data assimilation system, it is 
necessary to extend the application of the LETKF 
to more realistic weather forecast systems by 
accounting for systematic model errors.  
    The main goal in this work is to investigate 
techniques for treating model errors in the 
Ensemble Kalman Filter, building on previous work, 
and to develop a data assimilation system capable 
of assimilating real weather observations. Though 
we focus on the LETKF, the results may also be 
applicable to other Ensemble Kalman Filter 
methods. Recently, Baek et al (2005) extended 
the work of Dee and Da Silva (1998), hereafter 
referred as DDS, by using a high order bias 
estimate scheme based on the state augmentation 
correcting the model errors at each grid point, and 
also accounting for the cross-correlation of model 
state variables and bias. They successfully tested 
this approach with the Lorenz 40-variable model 
and showed the ability to correct forecast model 
errors.  Miyoshi (2005) tested the high order DDS 
approach on the SPEEDY primitive equations 
model (without cross correlation terms) with the 
EnSRF assimilation scheme but found it to be 
unsuccessful. He then tried a low order correction 
approach developed by Danforth et al (2005) in 
which the model errors are expanded into low 
order EOFs, with very good results.  In this work, 
by using the LETKF as the data assimilation 
method, we first test the Baek et al (2005) high 
order approach with cross-correlations, to 
determine whether the failure found by Miyoshi 
(2005) is due to the absence of cross-correlations. 
However the high order approach of correcting at 
each grid point is computationally very expensive. 
Thus we develop a low order approach in the 
LETKF, and compare both results, under the 
hypothesis that model errors can be represented 
by relatively few degrees of freedom and can thus 
be efficiently corrected. 
   



2. TECHNIQUES FOR TREATING MODEL 
ERRORS 
 
2.1 Full dimensional augmented state method 
 
    Friedland (1969) proposed the augmented 
state method by augmenting the state vector by a 
model bias vector to estimate both the state and 
bias variables. Building on this idea, Dee and Da 
Silva (1998) developed a two-stage estimation 
algorithm in which the estimation procedures for 
the bias and the state are carried out successively. 
The bias is estimated on every model grid point by 
the observed-minus-forecast residuals 
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where the matrix  and are the forecast 
error covariance for the bias and the state 
variables, respectively. 
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h ·  is the operator 
mapping the model state variables into 
observation space. 
The analysis for the state variables is then 
obtained using the standard analysis procedure 
with the unbiased forecast state  . aff bxx −=~
    Another augmented state method proposed 
by Baek et al (2005) is to obtain the optimal 
estimates of the state and bias variables 
simultaneously. They assume there are no bias 
observations but that the bias on all model grids 
can be updated from the state observations by the 
cross-correlation between the forecast state and 
bias through the cross covariance, while this 
cross-correlation is assumed to be zero in DDS.  
    The unbiased state forecast is calculated first 
as , then is used in the augmented 
state analysis procedure:  
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    Equations (3) and (4) implicate the bias is 
estimated by 
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  The major difference between (1), (2) and (5), 
(6) exists in the weighting matrix , the former 

uses the bias forecast error covariance , the 

latter uses the cross covariance  between the 
bias and state variables.  
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2.2 Low order bias estimation scheme 
 

Assume we have a simple nonlinear model such 
that  

   +… (7)              xn+1
m = Fn

m(xn
m ) = am + bmxn

m + cmxn
m2

where n is the time step, represents the 
anomaly of the state with respect to climatology, 

and are coefficients of state-
independent terms, and of terms that vary linearly, 
quadratically or with higher order with the state 
anomaly. These model parameters may be a 
function of time or space, containing, for example, 
a diurnal and an annual cycle. The model 
approximates the evolution of a “true” system: 
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Here the super-indices m and t refer to model and 
truth respectively. We define the state error (with 
the sign of a correction) as 

δxn = xn
t − xn

m
,           so that 

δxn+1 = Fn
t (xn
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m )                   (9) 
 
    We measure noisy observations of the truth   
         xn

t = xn
t + δxn

t  
Then 
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Here δF represents , , 
,… , the model parameter errors. 

The first bracket on the RHS of (10) represents 
error due to model deficiencies, i.e., the source of 
“external” error growth, and the second is the 
linear tangent model or propagator of the error that 
is the source of “internal” error growth related to 
instabilities. We will neglect the last terms that are 
proportional to the product of parameter errors and 
state errors.  

mt aaa −=δ mt bbb −=δ
mt ccc −=δ

  If the true state was exactly known 
( ), we could use the model (7) and initial 

conditions  and compute exactly the model 
error at every time step.  However, in practice we 
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only have noisy observations of the truth.  If we 
assume that the observational error  and 

state error have zero mean and their 
standard deviation is small compared to the typical 
size of the model state anomaly, then we can 
measure equation (10) over many cases and 
obtain 

δ xn
t
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 + random 
errors 
δxn+1 = δa +δbxn

m +δcxn
m2 + ...⎡⎣ ⎤⎦

 
    If we collect enough cases, we can obtain the 
systematic errors due to model deficiencies by 
linear regression where the predictor is . xn

m

  Danforth et al (2005) have performed this 
procedure with the SPEEDY model using 5 years 
of reanalysis as training for the linear regression. 
Like Leith (1978) and DelSole and Hou (1999), 
they retained only the state independent and the 
linear terms. In the multiple linear regression, they 
obtained the seasonally dependent model bias 
and the diurnal errors that dominate the EOFs of 
the state independent error corresponding toδa . 
The linear component corresponding to δb  was 
obtained using SVD of the covariance of the 
coupled model state anomalies and corresponding 
measured errors with respect to the reanalysis. 
This required spatial localization of the covariance 
matrix in order to reduce sampling problems. The 
model bias δa  and the leading EOFs of the state 
independent and state dependent errors explain 
most of the model error and can be used as a low 
order model correction. 

  In this study we plan to take advantage of 
these independently derived fields and assume 
that during the data assimilation the actual errors 
are proportional to them, with amplitudes that are 
determined as part of the LETKF cycle. 

           βTb =                    (11) 

Here T denotes the pre-computed base fields 
with dimension n×k, where each column denotes 
base fields, including the seasonal bias, the 
diurnal errors corresponding to`δa , and the state 
dependent errors. The time-dependent amplitudes 
of these base fields are represented by the 
vectorβ  (with dimension k) and can be estimated 
in the analysis cycle. Since the dimension of β  is 
much lower than the model dimension n, 
estimating β is far less costly than estimating b in 
the analysis cycle. 
 

3. IMPLEMENTATION ON THE LETKF IN THE 
PRESENCE OF THE MODEL ERRORS 
 
3.1 The SPEEDY model 
 
    The SPEEDY model (Molteni 2003) is a 
recently developed atmospheric general 
circulation model (AGCM) with simplified physical 
parameterization schemes that are 
computationally efficient, but that maintain the 
basic characteristics of a state-of-the-art AGCM 
with complex physics.  It has a spectral primitive-
equation dynamics and triangular truncation T30 
at 7 sigma levels.  
 
3.2 LETKF data assimilation scheme 
 
    The Local Ensemble Transform Kalman Filter 
(LETKF) is chosen for this model error estimation 
study since it belongs to the sequential data 
assimilation family whose performance is sensitive 
to model bias. 

LETKF is an ensemble square-root filter in 
which the observations are assimilated to update 
only the ensemble mean (shown in equation (12)) 
while the ensemble perturbations are updated by 
transforming the forecast perturbations through a 
transform matrix (equation (13)) introduced by 
Bishop et al (2001). The basic formulas used in 
the LETKF (Hunt 2005) are given by  
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Here  are the analysis and forecast 
ensemble perturbations, respectively. The 

transform matrix 

ba XX ,

2/1~ aP  is the square-root of 
matrix ( ) aPk ~1− where aP~  is given by 
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with the dimension of k by k, where k is the 
ensemble size, which is generally much smaller 
than both the dimension of the model and the 
number of observations. Thus, the LETKF 
performs the analysis in the space spanned by the 
forecast ensemble members, which greatly 
reduces the computational cost. Furthermore, 
since the analysis is computed independently at 
each grid point, the LETKF computation can be 
performed in parallel. 
 
3.3 Observations   

 



The observations are obtained by adding the 
zero mean normal distributed noise to the 
NCEP/NCAR reanalysis (NNR) fields (Kalnay et al 
1996), which are then an indirect estimate of the 
state of the evolving atmosphere. With respect to 
these observations, the SPEEDY model has 
significant model errors. The observations are 
available on the model grid at every 4 grid points. 
In each analysis cycle (6hour), the LETKF is 
combined with one of the bias estimate methods 
to correct the forecast errors due to inaccurate 
initial conditions and model errors.  
 
4. PRELIMINARY RESULTS 
 
4.1 Evidence of model bias 
 
    First we investigate the SPEEDY model bias 
against the NNR. The SPEEY model is evolved 
from the NNR every 6 hours. Figure 1 shows the 
differences between the SPEEDY 6hr forecasts 
and the NNR verified at the same time, averaged 
over two months in the period from January 1, 
1982 to February 28, 1982, for the zonal wind and 
height at 500 hPa. The largest model bias of the u-
wind can be seen in the polar regions. Orographic 
effect is a major originator for the systematic 
errors in the height field.  
 

 
 
FIG. 1 The SPEEDY 6-hour model bias of u-wind (unit: 
m/s) and height (unit: m) at 500hPa against NNR 
reanalysis fields. The time averaged NNR over the 
same period and at the same level is shown by contours.  
 

4.2 Effects of model errors on the LETKF 
  

To investigate the effects of model errors, we 
perform the LETKF using “realistic observations” 
from NNR and “simulated observations” obtained 
from a SPEEDY model “nature run” where no 
model errors exist. Figure 2   shows the strong 
negative influence of the model errors on the 
performance of the LETKF. In the presence of 
model errors, the analysis is much worse than in 
the perfect model scenario for u-wind, height, and 
other model variables (not shown) at all pressures 
levels. Therefore, it is an important issue for 
LETKF to estimate and correct the model errors. 

     

    
 
FIG.2 Global mean analysis RMS error at all pressure 
levels averaged over the second month (Feb 1982) after 
the initial transient behavior with LETKF in the perfect 
model scenario ( blue line) and in the presence of the 
model errors ( red line) for u-wind (left) and height (right). 
 
4.3 Constant mean bias correction   
 
    Following Miyoshi (2005), we simplify the low 
order estimation scheme by correcting only the 
time-averaged fields. In this way, T in equation 
(11) has just one column, given by the mean bias 
over the two months period. β is fixed to 1.  
Figure 3 illustrates the success of this simple bias 
correction. Comparing the analysis RMSE at 
500hPa with (green line) and without (red line) the 
mean bias correction, we can see clearly that 
subtracting the mean bias largely reduced the 
analysis errors. This improvement is also 
substantial at other pressure levels especially at 
the lower levels (Figure 4).  



       

 
 
FIG.3 Time evolution of the global mean analysis errors 
of the u-wind (top) and height (bottom) fields at 500hPa 
in the presence of the model errors ( red line) and in the 
case of mean bias correction.     
    

 
 
FIG.4 Global mean analysis RMS at all pressure levels 
averaged over the second month (Feb 1982) beyond 
the spin-up time in the presence of the model errors 
( red line) and in the case of mean bias correction 
(green line) for u-wind (left) and height (right). 
 
5. DISCUSSION AND FUTURE WORK  
 

  The full dimensional bias estimation method 
has not been tested so far. We will test the 
augmented state method in our future work. 
However this high order approach of correcting at 

each grid point is computationally expensive and 
can lead to very slow convergence of the LETKF 
because it doubles or triples the number of 
unknowns to be determined. According to Baek et 
al (2005), in order to obtain the optimal analysis, 
the number of the ensemble members also needs 
to be doubled, making the computationally cost 
even higher. In contrast, the low order approach 
increases the size of the model state by a very 
small percentage, the expectation is that it will be 
much more efficient than an augmentation with the 
full model error field.  

  Our results have shown that simply 
subtracting the constant mean bias from the 
background fields at every analysis cycle has a 
significant positive impact on the LETKF. In our 
future work, the time-variant amplitude of this 
mean bias field will be estimated by using the low 
order method.  We believe this will give us a 
better result than the constant mean bias 
subtraction. Moreover, we will correct the diurnal 
bias and then the state-dependent bias. Retaining 
each component of the bias estimate, we should 
be able to get a good estimate of the true model 
errors. If successful, this approach could not only 
improve the performance of the LETKF, but also of 
the forecast, as well as providing information on 
model errors useful for diagnostic purposes. 
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