
using precipitation radar for urban
hydrology: a new metagaussian model

Pierre Ailliot 1, Marie Boutigny 1,2, Aurore Chaubet 2, Benoît Saussol 1

February 11, 2020
1 Laboratoire de Mathématiques de Bretagne Atlantique (LMBA)
2 Eau du Ponant



Table of contents

1. Introduction

2. Modelling rainfall

3. Preliminary results

4. Application to urban hydrology

1/23



introduction



Introduction

Hydrological model
∙ Describe the functioning of the
sewer system

∙ Calibrated on the adjustment
between rain and network
measurements

∙ Currently using 1 rain gauge for
the entire area

Question

What precipitation data should be used as input?

Especially, can spatialization impact the model outputs?
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Rain gauges

→ 3 time step
→ Measurement errors (raw data)
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Radar

→ 1km2 grid, 5 min time
step

→ Sometimes biased
measurement

→ Heterogeneous
post-processing
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modelling rainfall



Modelling margins

Transformed censored Gaussian distribution
[Benoit et al., 2018, Allcroǌt and Glasbey, 2003]

Latent normal field

X ∼ N (µ,Σ)

Precipitation

Y =

{
0 if X ≤ 0
ψ(X) otherwise
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State of art

ψ(x) = axb
[Ailliot et al., 2009]

ψ(x) = axr + bx2r
[Allcroǌt and Glasbey, 2003]

ψ(x) = b(eaxc − 1)
[Allard and Bourotte, 2015]
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Empirical anamorphosis

We can write
ψ̂(u) = F−1emp(Φµ(u)),

with Femp the c.d.f. of Y+, the strictly positive values of Y, and Φµ the Gaussian

c.d.f. with mean µ.
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Empirical anamorphosis

We can write
ψ̂(u) = F−1emp(Φµ(u)),

with Femp the c.d.f. of Y+, the strictly positive values of Y, and Φµ the
Gaussian c.d.f. with mean µ.
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Proposed anamorphosis

We propose

ψ(x) = σx 1
αe

ξx2
2 ,

with σ > 0, α > 0, ξ ≥ 0.

∙ Moment of order p is finite if p < 1
ξ

∙ Equivalent to a GPD in +∞:

P(Y > y+ u | Y > u) ∼
(
1+ y

σu

)− 1
ξ

as u→ +∞, with σu = u
σ .

∙ Power shape controlled by α as y→ 0:

fY(y) ∼
α√
2π

( y
σ

)α−1
exp

(
−µ

2

2

)
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Proposed anamorphosis

We propose

ψ(x) = σx 1
αe

ξx2
2 ,

with σ > 0, α > 0, ξ ≥ 0.

∙ the lower α, the more we
produce low values

∙ the higher ξ, the heavier the
tail is
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preliminary results



Adjusting margins for radar data

X ∼ N(µ, 1) and Y =

{
σx 1

α e ξx2
2 if X > 0

0 otherwise

Estimation

log(L(Y, θ)) = Ndrylog(Φµ(0))+
∑
y>0

log
[
Φµ

(
ψ−1(y)

)
− Φµ

(
ψ−1(y+ step)

)]

with ψ−1(y) =
√

1
αξ
W
(
αξ

( y
σ

)2α), step the discretization, Ndry the number of
dry observations and the Lambert W function.

Data

Radar in November, 2014-2018, 5 minutes time step, 1 point
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Adjusting margins for radar data

Figure 7: Quantile-quantile plots of the adjusted models, in mm. The light red area gives the 95% intervals, computed with 500 non
parametric bootstrap replicates.
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Interpretation of the parameters

X ∼ N(µ, 1) and Y =

{
σx 1

α e ξx2
2 if X > 0

0 otherwise

As the time step increases,
∙ µ↗ : less dry weather
∙ σ ↗
∙ α↘ : more low and medium
rain rates

∙ ξ ↘ : less heavy tails

Figure 8: Boxplot of the estimated parameters at different time
steps, with 500 non parametric bootstrap replicates.
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application to urban hydrology



Context

The hydrological model is calibrated with 1 rain gauge.

Question: Can the spatial pattern of rainfall improve the
hydrological model outputs?

Need of :

∙ Spatialized data→ radar
∙ 3 minute time step data→ interpolation
∙ Gauge-like distribution→ correction
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Motion based interpolation

Motion estimation: maximum of correlation between lagged images

Results

∙ Better prediction than persitance and optical flow
∙ Consistent with wind (direction and speed)
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Motion based interpolation

Interpolation

→ Weighted mean of the 2 ways, weights are proportional to the
distance with the initial frame.
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Motion based interpolation

Interpolation

Results

∙ We can reproduce 5min radar with 10min radar
∙ Interpolated images are smoother
→ Aggregate to keep the intensity peaks
(instead of taking t, t+3, t+6 etc.)
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Correcting rainfall distribution

Quantile-Quantile mapping

General outline:
Ycorr = F−1mod(Fobs(Y))

Where

∙ Fobs is the cdf of Y→ radar cdf
∙ Fmod is the goal cdf→ gauge cdf

2 options:

Empirical cdf
Fobs: empirical radar cdf
Fmod: empirical gauge cdf

Model cdf
Fobs: cdf with radar parameters
Fmod: cdf with gauge parameters
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Some results

Example on a point where we have both rain gauge data, at a 3 min
time step.

Half of the data was used for learning, and the other half was used
for the qqplots shown.
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Conclusion

The proposed anamorphosis for metagaussian model

∙ shows good adjustment on both radar and gauges data,
∙ gives easily interpretable parameters.

Future work

∙ Compare our model with a framework based on GPD:
Y = σH−1(G−1(U)) with H the c.d.f. of a GPD and G(u) = uα

[Naveau et al., 2016]

Example of application

∙ Using radar data for a hydrological model
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Thank you

24/23



Reference

Ailliot, P., Thompson, C., and Thomson, P. (2009).
Space–time modelling of precipitation by using a hidden markov model and censored gaussian distributions.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 58(3):405–426.

Allard, D. and Bourotte, M. (2015).
Disaggregating daily precipitations into hourly values with a transformed censored latent gaussian process.
Stochastic environmental research and risk assessment, 29(2):453–462.

Allcroǒt, D. J. and Glasbey, C. A. (2003).
A latent gaussian markov random-field model for spatiotemporal rainfall disaggregation.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 52(4):487–498.

Benoit, L., Allard, D., and Mariethoz, G. (2018).
Stochastic rainfall modeling at sub-kilometer scale.
Water Resources Research, 54(6):4108–4130.

Naveau, P., Huser, R., Ribereau, P., and Hannart, A. (2016).
Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection.
Water Resources Research, 52(4):2753–2769.

25/23


	Introduction
	Rain gauges
	Radar

	Modelling rainfall
	Preliminary results
	Application to urban hydrology

