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INTRODUCTION



INTRODUCTION

HYDROLOGICAL MODEL

- Describe the functioning of the
sewer system

- Calibrated on the adjustment
between rain and network ;
measurements .

- Currently using 1 rain gauge for | . .
the entire area

QUESTION
What precipitation data should be used as input?

Especially, can spatialization impact the model outputs?
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RAIN GAUGES
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— 1km? grid, 5 min time
step

— Sometimes biased
measurement

— Heterogeneous
post-processing

2016-02-23 01:00:00

48.40 48.45 48.50

48.35

48.30

4.85 4.60 4.55 4.50 4.45 4.40 -4.35

mm/Smin
- .
0.00 0.35

5/23



MODELLING RAINFALL



MODELLING MARGINS

Transformed censored Gaussian distribution
[Benoit et al,, 2018, Allcroft and Glasbey, 2003]
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STATE OF ART

»(x) = axb $(X) = ax’ + bx?r b(x) = b(e™ — 1)

[Ailliot et al.,, 2009] [Allcroft and Glasbey, 2003] [Allard and Bourotte, 2015]
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EMPIRICAL ANAMORPHOSIS

We can write
P(U) = Fomp(®u(u)),

With Femp the c.d.f. of YT, the strictly positive values of Y, and ¢, the Gaussian

empirical

c.d.f. with mean p.
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EMPIRICAL ANAMORPHOSIS

We can write
P(u) = Fomp(®u(u)),

with Femp the c.d.f. of YT, the strictly positive values of Y, and ®,, the
Gaussian c.d.f. with mean p.

empirical

w ] ax*b
ax”r+br2r}
b(exp(ax~c)-1)
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PROPOSED ANAMORPHOSIS

We propose

Y(x) = oxae™r

witho > 0, > 0,£ > 0.

-Moment of order p is finite if p < ¢

- Equivalent to a GPD in +oc:

=

P(Y>y+u|Y>u)~(1+!)

u

as u — +oo, With oy = £.

- Power shape controlled by e as y — 0:

i~ —= (1) e (-4
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PROPOSED ANAMORPHOSIS

We propose

with o > 0, > 0,£ > 0.

o=1:a=1:{=0025 /
o=1:0=05; =025
o=1:a=05;€=025

- the lower «, the more we @
produce low values B

- the higher ¢, the heavier the
tail is ™
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PRELIMINARY RESULTS




ADJUSTING MARGINS FOR RADAR DATA

e .
oxzeT ifX>0

X~ N(u,1) and Y= .
(. ) { 0 otherwise

ESTIMATION

[0g(£L(Y,0)) = Nary/log(®,,(0))+>_log [®,, (v7'(y)) — b, (v~ '(y + step))]

y>0

with ¢~ "(y) = 4 /aigw (a§ (g)za) step the discretization, Ngy, the number of

dry observations and the Lambert W function.
DATA

Radar in November, 2014-2018, 5 minutes time step, 1 point
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ADJUSTING MARGINS FOR RADAR DATA

Fitted quantiles

"Power-exp" model

Proposed model
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INTERPRETATION OF THE PARAMETERS

1ol .
X~N(s,1) and y={ oX<€r FX>0

0 otherwise
mu sigma
2] =] °] i
1 = ] =
As the time step increases, 1 Bl ] =
- 2 less dry weather (i e = ==
* @ /‘ alpha xi
- a\: more low and medium 1= st o
rain rates LR = ] 1L E’E
_ ] I = . Bl
- €\, less heavy tails > 2] .

plo e estimated parameters at different time
th 500 non parametric bootstrap replicates
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APPLICATION TO URBAN HYDROLOGY




CONTEXT

The hydrological model is calibrated with 1 rain gauge.

QUESTION: Can the spatial pattern of rainfall improve the
hydrological model outputs?
Need of :

- Spatialized data — radar
- 3 minute time step data — interpolation
- Gauge-like distribution — correction
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MOTION BASED INTERPOLATION

Motion estimation: maximum of correlation between lagged images

RESULTS

- Better prediction than persitance and optical flow
- Consistent with wind (direction and speed)
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MOTION BASED INTERPOLATION

INTERPOLATION

— Weighted mean of the 2 ways, weights are proportional to the
distance with the initial frame.
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MOTION BASED INTERPOLATION
INTERPOLATION
t+2 t+3 t+4 t+5

t
r
- We can reproduce 5min radar with 10min radar

RESULTS

- Interpolated images are smoother
— Aggregate to keep the intensity peaks
(instead of taking t, t+3, t+6 etc.)
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CORRECTING RAINFALL DISTRIBUTION

QUANTILE-QUANTILE MAPPING

General outline:
Ycorr = F,;;d(Fobs(Y))

Where

- Fops is the cdf of Y — radar cdf
* Fmog IS the goal cdf — gauge cdf

2 options:

EMPIRICAL CDF MODEL CDF

Fops: empirical radar cdf Fops: cdf with radar parameters
Fmog: empirical gauge cdf Fmoq: cdf with gauge parameters
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SOME RESULTS

Example on a point where we have both rain gauge data, at a 3 min

raw empirical model
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Half of the data was used for learning, and the other half was used
for the qqgplots shown.
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CONCLUSION

The proposed anamorphosis for metagaussian model

- shows good adjustment on both radar and gauges data,
- gives easily interpretable parameters.

FUTURE WORK

- Compare our model with a framework based on GPD:
Y = oH™(G™'(U)) with H the c.df. of a GPD and G(u) = u®
[Naveau et al, 2016]

EXAMPLE OF APPLICATION

- Using radar data for a hydrological model
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