USING PRECIPITATION RADAR FOR URBAN HYDROLOGY: A NEW METAGAUSSIAN MODEL

Pierre Ailliot ¹, <u>Marie Boutigny</u> ^{1,2}, Aurore Chaubet ², Benoît Saussol ¹ February 11, 2020

¹ Laboratoire de Mathématiques de Bretagne Atlantique (LMBA) ² Eau du Ponant

- 1. Introduction
- 2. Modelling rainfall
- 3. Preliminary results
- 4. Application to urban hydrology

INTRODUCTION

INTRODUCTION

HYDROLOGICAL MODEL

- Describe the functioning of the sewer system
- Calibrated on the adjustment between rain and network measurements
- Currently using 1 rain gauge for the entire area

QUESTION

What precipitation data should be used as input? Especially, can spatialization impact the model outputs?

- ightarrow 3 time step
- \rightarrow Measurement errors (raw data)

- \rightarrow 1km² grid, 5 min time step
- \rightarrow Sometimes biased measurement
- → Heterogeneous post-processing

MODELLING RAINFALL

Transformed censored Gaussian distribution

[Benoit et al., 2018, Allcroft and Glasbey, 2003]

We can write

$$\hat{\psi}(u) = F_{emp}^{-1}(\Phi_{\mu}(u)),$$

with F_{emp} the c.d.f. of Y⁺, the strictly positive values of Y, and Φ_{μ} the Gaussian

c.d.f. with mean μ .

We can write

$$\hat{\psi}(u) = F_{emp}^{-1}(\Phi_{\mu}(u)),$$

with F_{emp} the c.d.f. of Y⁺, the strictly positive values of Y, and Φ_{μ} the Gaussian c.d.f. with mean μ .

PROPOSED ANAMORPHOSIS

We propose

$$\psi(\mathbf{x}) = \sigma \mathbf{x}^{\frac{1}{\alpha}} e^{\frac{\xi \mathbf{x}^2}{2}},$$

with $\sigma > 0, \alpha > 0, \xi \ge 0.$

- · Moment of order p is finite if $p < \frac{1}{\xi}$
- \cdot Equivalent to a GPD in $+\infty$:

$$P(Y > y + u \mid Y > u) \sim \left(1 + \frac{y}{\sigma_u}\right)^{-\frac{1}{\xi}}$$

as $u \to +\infty$, with $\sigma_u = \frac{u}{\sigma}$.

 \cdot Power shape controlled by α as $y \rightarrow 0$:

$$f_{\rm Y}(y) \sim \frac{\alpha}{\sqrt{2\pi}} \left(\frac{y}{\sigma}\right)^{\alpha-1} exp\left(-\frac{\mu^2}{2}\right)$$

PROPOSED ANAMORPHOSIS

We propose

$$\psi(\mathbf{X}) = \sigma \mathbf{X}^{\frac{1}{\alpha}} e^{\frac{\xi \mathbf{X}^2}{2}},$$

with $\sigma > 0, \alpha > 0, \xi \ge 0$.

- \cdot the lower $\alpha,$ the more we produce low values
- the higher ξ , the heavier the tail is

PRELIMINARY RESULTS

$$X \sim N(\mu, 1)$$
 and $Y = \begin{cases} \sigma x^{\frac{1}{\alpha}} e^{\frac{\xi x^2}{2}} & \text{if } X > 0 \\ 0 & \text{otherwise} \end{cases}$

ESTIMATION

$$log(\mathcal{L}(Y,\theta)) = N_{dry}log(\Phi_{\mu}(0)) + \sum_{y>0} log\left[\Phi_{\mu}\left(\psi^{-1}(y)\right) - \Phi_{\mu}\left(\psi^{-1}(y + step)\right)\right]$$

with $\psi^{-1}(y) = \sqrt{\frac{1}{\alpha\xi} W\left(\alpha\xi \left(\frac{y}{\sigma}\right)^{2\alpha}\right)}$, step the discretization, N_{dry} the number of dry observations and the Lambert W function.

Data

Radar in November, 2014-2018, 5 minutes time step, 1 point

ADJUSTING MARGINS FOR RADAR DATA

Figure 7: Quantile-quantile plots of the adjusted models, in mm. The light red area gives the 95% intervals, computed with 500 non parametric bootstrap replicates.

$$X \sim N(\mu, 1)$$
 and $Y = \begin{cases} \sigma x^{\frac{1}{\alpha}} e^{\frac{\xi x^2}{2}} & if X > 0\\ 0 & otherwise \end{cases}$

As the time step increases,

- $\cdot \ \mu
 earrow$: less dry weather
- $\cdot \sigma \nearrow$
- $\cdot \alpha \searrow$: more low and medium rain rates
- $\cdot \xi \searrow$: less heavy tails

Figure 8: Boxplot of the estimated parameters at different time steps, with 500 non parametric bootstrap replicates.

APPLICATION TO URBAN HYDROLOGY

The hydrological model is calibrated with **1 rain gauge**.

QUESTION: Can the spatial pattern of rainfall improve the hydrological model outputs?

Need of:

- \cdot Spatialized data \rightarrow radar
- \cdot 3 minute time step data \rightarrow interpolation
- \cdot Gauge-like distribution \rightarrow correction

Motion estimation: maximum of correlation between lagged images

RESULTS

- \cdot Better prediction than persitance and optical flow
- $\cdot\,$ Consistent with wind (direction and speed)

MOTION BASED INTERPOLATION

INTERPOLATION

 \rightarrow Weighted mean of the 2 ways, weights are proportional to the distance with the initial frame.

MOTION BASED INTERPOLATION

INTERPOLATION

Results

- \cdot We can reproduce 5min radar with 10min radar
- · Interpolated images are smoother \rightarrow Aggregate to keep the intensity peaks (instead of taking t, t+3, t+6 etc.)

QUANTILE-QUANTILE MAPPING

General outline:

$$Y_{corr} = F_{mod}^{-1}(F_{obs}(Y))$$

Where

- \cdot F_{obs} is the cdf of Y \rightarrow radar cdf
- \cdot F_{mod} is the goal cdf \rightarrow gauge cdf

2 options:

EMPIRICAL CDF

F_{obs}: empirical radar cdf *F_{mod}*: empirical gauge cdf

MODEL CDF

 F_{obs} : cdf with radar parameters F_{mod} : cdf with gauge parameters

Example on a point where we have both rain gauge data, at a 3 min time step.

Half of the data was used for learning, and the other half was used for the qqplots shown.

The proposed anamorphosis for metagaussian model

- \cdot shows good adjustment on both radar and gauges data,
- \cdot gives easily interpretable parameters.

Future work

• Compare our model with a framework based on GPD: $Y = \sigma H^{-1}(G^{-1}(U))$ with *H* the c.d.f. of a GPD and $G(u) = u^{\alpha}$ [Naveau et al., 2016]

Example of application

 $\cdot\,$ Using radar data for a hydrological model

ΤΗΑΝΚ ΥΟυ

REFERENCE

Ailliot, P., Thompson, C., and Thomson, P. (2009).

Space-time modelling of precipitation by using a hidden markov model and censored gaussian distributions. Journal of the Royal Statistical Society: Series C (Applied Statistics), 58(3):405-426.

Allard, D. and Bourotte, M. (2015).

Disaggregating daily precipitations into hourly values with a transformed censored latent gaussian process. Stochastic environmental research and risk assessment, 29(2):453–462.

Allcroft, D. J. and Glasbey, C. A. (2003).

A latent gaussian markov random-field model for spatiotemporal rainfall disaggregation. Journal of the Royal Statistical Society: Series C (Applied Statistics), 52(4):487–498.

Benoit, L., Allard, D., and Mariethoz, G. (2018). Stochastic rainfall modeling at sub-kilometer scale.

Water Resources Research, 54(6):4108-4130.

Naveau, P., Huser, R., Ribereau, P., and Hannart, A. (2016). Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection. *Water Resources Research*, 52(4):2753–2769.